Avanti® Widefield OCT

with AngioVue® OCT Angiography
Dear Friends of Optovue,

Since introducing Spectral Domain OCT to the ophthalmology market in 2006, Optovue has focused on developing OCT technologies that transform the lives of patients and physicians around the world. Our long string of “firsts” demonstrates that innovation is the backbone of our scientific heritage, and we are committed to continually expanding the frontiers of OCT by advancing image quality, system efficiency and clinical applications.

Over the past decade, and in collaboration with industry-leading ophthalmic specialists, we have pursued a bold and single-minded vision to offer state-of-the-art eye care technology to patients around the world by furthering the science of OCT and significantly improving access to OCT technology.

Headquartered in California’s Silicon Valley, Optovue is the only company in the world solely dedicated to the development, manufacture and sale of OCT. Our employees are true experts in the field of OCT who are committed to improving global eye health care.

I am heartened to witness continued development in the field of OCT, especially the leading role Optovue has played, that will potentially redefine the understanding of retinal disease and produce significant advancements in disease treatment and management.

Sincerely,

Jay Wei
Founder and CEO
Optovue, Inc.

Optovue extends sincere appreciation to Adil El Maftouhi OD (Centre Rabelais, Lyon, France) for the use of his images throughout this brochure. Unless noted, all images are courtesy of Adil El Maftouhi.
Dear Friends of Optovue,

Since introducing Spectral Domain OCT to the ophthalmology market in 2006, Optovue has focused on developing OCT technologies that transform the lives of patients and physicians around the world. Our long string of “firsts” demonstrates that innovation is the backbone of our scientific heritage, and we are committed to continually expanding the frontiers of OCT by advancing image quality, system efficiency and clinical applications.

Over the past decade, and in collaboration with industry-leading ophthalmic specialists, we have pursued a bold and single-minded vision to offer state-of-the-art eye care technology to patients around the world by furthering the science of OCT and significantly improving access to OCT technology.

Headquartered in California’s Silicon Valley, Optovue is the only company in the world solely dedicated to the development, manufacture and sale of OCT. Our employees are true experts in the field of OCT who are committed to improving global eye health care.

I am heartened to witness continued development in the field of OCT, especially the leading role Optovue has played, that will potentially redefine the understanding of retinal disease and produce significant advancements in disease treatment and management.

Sincerely,

Jay Wei
Founder and CEO
Optovue, Inc.

Optovue extends sincere appreciation to Adil El Maftouhi OD (Centre Rabelais, Lyon, France) for the use of his images throughout this brochure. Unless noted, all images are courtesy of Adil El Maftouhi.
Small Incision Lenticule Extraction (SMILE) Surgery
Visualize and quantify laser incisions with the Cornea Line scan.

Implantable Collamer Lens
Measure collamer lens vault with the Cornea Line scan.

Photorefractive Keratectomy (PRK)
Assess epithelial thickness following PRK with the Cornea Line scan and Epithelial Thickness Mapping.

Cataract Surgery

Visualize posterior capsule opacification following IOL surgery.

Total Cornea Power (TCP) measures the front and back surface of the cornea to enable precise calculation of corneal power in post-laser vision correction patients.

TCP DATA POINTS
Enter the data points into the ASCRS calculator to generate recommended lens power. http://iolcalc.ascrs.org/

Corneal Power
- **Net**: 41.08
- **Anterior**: 47.20
- **Posterior**: -6.22

Curvature Radius
- **Anterior R**: 7.966
- **Posterior R**: 6.434

Pachymetry

<table>
<thead>
<tr>
<th>Layer</th>
<th>Offset</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN-IT (2-5mm):</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>S-I (2-5mm):</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Min:</td>
<td>463</td>
<td>Location Y:</td>
</tr>
<tr>
<td>Min-Median:</td>
<td>-33</td>
<td>Min-Max:</td>
</tr>
<tr>
<td>Min-Max:</td>
<td>-71</td>
<td></td>
</tr>
</tbody>
</table>

Min thickness at (-0.129mm, 0.059mm) indicated as *.

Epithelium

S (2-5mm):	55	57
Min:	51	Max:
Std Dev:	2.3	Min-Max:

Min/Max thickness indicated as */+.
Refractive Surgery
Visualize and measure anterior segment surgery outcomes with the Cornea Line scan, Pachymetry and 9mm Epithelial Thickness Mapping.

Small Incision Lenticule Extraction (SMILE) Surgery
Visualize and quantify laser incisions with the Cornea Line scan.

Implantable Collamer Lens
Measure collamer lens vault with the Cornea Line scan.

Photorefractive Keratectomy (PRK)
Assess epithelial thickness following PRK with the Cornea Line scan and Epithelial Thickness Mapping.

Cataract Surgery

Total Cornea Power (TCP)® measures the front and back surface of the cornea to enable precise calculation of corneal power in post-laser vision correction patients.

TCP DATA POINTS
Enter the data points into the ASCRS calculator to generate recommended lens power: http://iolcalc.ascrs.org/

<table>
<thead>
<tr>
<th>Layer</th>
<th>Offset</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN-IT (2-5mm)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>S-I (2-5mm)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Min-Median</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>Min-Max</td>
<td>-71</td>
<td>-71</td>
</tr>
</tbody>
</table>

CORNEAL POWER

<table>
<thead>
<tr>
<th>Power</th>
<th>Net</th>
<th>Anterior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net</td>
<td>41.08</td>
<td>47.20</td>
<td>-6.22</td>
</tr>
</tbody>
</table>

CURVATURE RADIUS

<table>
<thead>
<tr>
<th>Anterior R</th>
<th>Posterior R</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.966</td>
<td>6.434</td>
</tr>
</tbody>
</table>

EPITHELIUM

<table>
<thead>
<tr>
<th>Epithelium statistics within central 5mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (2-5mm)</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Std Dev</td>
</tr>
</tbody>
</table>

Min/Max thickness indicated as */+
Anterior Segment

Keratoconus & Other Ectasias
Quantify epithelial, stromal and total corneal thickness to aid in disease diagnosis. Pachymetric measurements may be compared to the Coollabs Keratoconus Risk Scoring System to further enhance diagnostic accuracy. (http://www.coollab.net/resources)

Dry Eye
Add new information to the diagnosis and management of dry eye patients with Epithelial Thickness Mapping.

Pellucid Marginal Degeneration
Cornea Line scan shows epithelial thinning superiorly and thickening inferiorly. The Epithelial Thickness Map confirms visual assessment (orange circle correlates to orange arrow and white circle correlates to white arrow).
Keratoconus & Other Ectasias
Quantify epithelial, stromal and total corneal thickness to aid in disease diagnosis. Pachymetric measurements may be compared to the Coollabs Keratoconus Risk Scoring System to further enhance diagnostic accuracy.
(http://www.coollab.net/resources)

Dry Eye
Add new information to the diagnosis and management of dry eye patients with Epithelial Thickness Mapping.

Pellucid Marginal Degeneration
Cornea Line scan shows epithelial thinning superiorly and thickening inferiorly. The Epithelial Thickness Map confirms visual assessment (orange circle correlates to orange arrow and white circle correlates to white arrow).
Trend Analysis

Trend analysis tracks change in both GCC and RNFL to estimate future progression. Optovue-exclusive focal loss volume (FLV) analysis allows detection of focal defects in the ganglion cell complex, which is the most predictive factor for glaucoma progression\(^1\).

Angle Analysis

Acquire high-resolution images of the irido-corneal angle to visualize angle structure, the trabecular meshwork and Schlemm’s canal. Quantitative measurement tools enable careful assessment of the angle in glaucoma patients.

OCT Angiography of the Optic Disc

Enhance glaucoma diagnosis and management with a single scan protocol showing OCT intensity, radial peripapillary capillary (RPC) vasculature, RPC density and RNFL thickness.

Disc QuickVue Report

OCT and OCTA analysis in a single scan protocol. Vessel density analysis based on the RPC (ILM~NFL).
Trend Analysis
Trend analysis tracks change in both GCC and RNFL to estimate future progression. Optovue-exclusive focal loss volume (FLV) analysis allows detection of focal defects in the ganglion cell complex, which is the most predictive factor for glaucoma progression.

Angle Analysis
Acquire high-resolution images of the irido-corneal angle to visualize angle structure, the trabecular meshwork and Schlemm's canal. Quantitative measurement tools enable careful assessment of the angle in glaucoma patients.

OCT Angiography of the Optic Disc
Enhance glaucoma diagnosis and management with a single scan protocol showing OCT intensity, radial peripapillary capillary (RPC) vasculature, RPC density and RNFL thickness.

Disc QuickVue Report
OCT and OCTA analysis in a single scan protocol. Vessel density analysis based on the RPC (ILM–NFL)
Enhanced HD Imaging of the Vitreous and Choroid

12mm widefield scan with enhanced depth imaging mode provides high resolution views (5μm axial resolution and 15μm transverse) of the vitreous, retina and choroid with quantitative analysis tools.

Easily toggle between vitreous and chorioretinal mode with the Enhanced HD Line scan.

Quantify choroidal thickness with the caliper tool.
Enhanced HD Imaging of the Vitreous and Choroid

12mm widefield scan with enhanced depth imaging mode provides high resolution views (5μm axial resolution and 15μm transverse) of the vitreous, retina and choroid with quantitative analysis tools.

Enhanced HD Line Scan

High Myope

Enhanced HD Line Scan Color Mode

Cloquet’s Canal

Easily toggle between vitreous and chorioretinal mode with the Enhanced HD Line scan.

Quantify choroidal thickness with the caliper tool.
3D En Face Imaging
See the retina in three dimensions and study individual layers of the retina with en face imaging.

Central Serous
Quickly identify dilated choroidal vessels typically associated with pachychoroid in central serous chorioretinopathy (CSCR).

Macular Pucker

En face OCT, the 3D Cube scan and the OCT B-scan display a macular pucker.

Comprehensive Retinal Analysis
Avanti® reports provide a comprehensive assessment of the retina in an easy-to-read format.

21-line Raster scan with thickness map in AMD.

Retinal thickness map with normative comparison showing epiretinal membrane.
En face OCT, the 3D Cube scan and the OCT B-scan display a macular pucker.

3D En Face Imaging
See the retina in three dimensions and study individual layers of the retina with en face imaging.

Central Serous
Quickly identify dilated choroidal vessels typically associated with pachychoroid in central serous chorioretinopathy (CSCR).

Macular Pucker

Comprehensive Retinal Analysis
Avanti® reports provide a comprehensive assessment of the retina in an easy-to-read format.

21-line Raster scan with thickness map in AMD.

Retinal thickness map with normative comparison showing epiretinal membrane.
AngioVue OCT Angiography
Add AngioVue OCTA to the Avanti platform to enable non-invasive vascular imaging of retinal and optic disc vessels.

Superficial Complex Deep Complex Outer Retina Zone Choriocapillaris

AngioVueHD™
High density OCTA (400x400 vs. traditional OCTA density of 304x304) provides unprecedented views of the fine vessels extending beyond the central 3x3mm region of the macula. AngioVueHD affords the highest resolution for large format images.

AngioVueHD Automatic Montage
10x6mm field-of-view with outstanding resolution of retinal vasculature in the macula and optic disc.

SSADA: Split-Spectrum Amplitude Decorrelation Angiography
OCTA relies on the acquisition of sequential OCT B-scans at a single cross-section of the retina and a comparison of the scans against one another. The differences between scans indicate the presence of blood flow. SSADA is a proprietary algorithm that shortens the scan time needed to acquire the sequential B-scans while producing unparalleled OCTA image quality by optimizing the signal to noise ratio.
AngioVue OCT Angiography

Add AngioVue OCTA to the Avanti platform to enable non-invasive vascular imaging of retinal and optic disc vessels.

Superficial Complex

Deep Complex

Outer Retina Zone

Choriocapillaris

AngioVueHD™

High density OCTA (400x400 vs. traditional OCTA density of 304x304) provides unprecedented views of the fine vessels extending beyond the central 3x3mm region of the macula. AngioVueHD affords the highest resolution for large format images.

AngioVueHD Automatic Montage

10x6mm field-of-view with outstanding resolution of retinal vasculature in the macula and optic disc.

SSADA: Split-Spectrum Amplitude Decorrelation Angiography

OCTA relies on the acquisition of sequential OCT B-scans at a single cross-section of the retina and a comparison of the scans against one another. The differences between scans indicate the presence of blood flow. SSADA is a proprietary algorithm that shortens the scan time needed to acquire the sequential B-scans while producing unparalleled OCTA image quality by optimizing the signal to noise ratio.
AngioVue Projection Artifact Removal
3D Projection Artifact Removal (PAR) reduces projection artifact in all posterior layers by performing vessel-by-vessel analysis to remove artefactual vessels while keeping authentic vasculature, which is essential for accurate image interpretation and quantification.

3D PAR™ Improves Visualization
Abnormal vasculature in the outer retina and choroid is more easily identified when projection artifact is removed.

3D PAR Reduces Over-Correction
Unlike traditional projection artifact removal algorithms, 3D PAR maintains the signal strength to better display real vasculature.

DualTrac™ Motion Correction
DualTrac Motion Correction Technology combines real-time tracking, a high-speed infrared camera (30 frames/sec.), and patented post-processing to enable true 3D correction of distortion in all directions. The outcome is ultra precise motion correction resulting in superior image quality.
AngioVue Projection Artifact Removal

3D Projection Artifact Removal (PAR) reduces projection artifact in all posterior layers by performing vessel-by-vessel analysis to remove artefactual vessels while keeping authentic vasculature, which is essential for accurate image interpretation and quantification.

3D PAR™ Improves Visualization

Abnormal vasculature in the outer retina and choroid is more easily identified when projection artifact is removed.

3D PAR Reduces Over-Correction

Unlike traditional projection artifact removal algorithms, 3D PAR maintains the signal strength to better display real vasculature.

DualTrac™ Motion Correction

DualTrac Motion Correction Technology combines real-time tracking, a high-speed infrared camera (30 frames/sec.), and patented post-processing to enable true 3D correction of distortion in all directions. The outcome is ultra precise motion correction resulting in superior image quality.
Vessel Density Mapping

Vessel density mapping measures the vessel density of the superficial and deep plexi of the retina as well as the radial peripapillary capillary layer of the optic disc.

Measure Flow Area by outlining a region for vessel detection. The extracted Flow Area measurement is based on the Outer Retina slab (OPL – BRM).

Measurements include Foveal Avascular Zone (FAZ) area, perimeter, A-circularity index and foveal vessel density.*

*Based on methods described by Richard Rosen, MD and Toco Chui, MD, ARVO 2016.

Segmentation Quick-Edit

When segmentation editing is needed, boundaries may be manually adjusted at a single point and propagated throughout the entire B-scan in less than one second to quickly improve the accuracy and consistency of CNV assessment and quantification - even in eyes with extensive pathology.

Image courtesy of Julie Rodman, OD, FAAO, Ft. Lauderdale, Florida
Vessel Density Mapping

Vessel density mapping measures the vessel density of the superficial and deep plexi of the retina as well as the radial peripapillary capillary layer of the optic disc.

Measure Flow Area by outlining a region for vessel detection. The extracted Flow Area measurement is based on the Outer Retina slab (OPL – BRM).

Measurements include Foveal Avascular Zone (FAZ) area, perimeter, A-circularity index and foveal vessel density.*

*Based on methods described by Richard Rosen, MD and Toco Chui, MD, ARVO 2016.

Segmentation Quick-Edit

When segmentation editing is needed, boundaries may be manually adjusted at a single point and propagated throughout the entire B-scan in less than one second to quickly improve the accuracy and consistency of CNV assessment and quantification - even in eyes with extensive pathology.
AngioAnalytics Reports

AngioAnalytics reports enable quick and comprehensive analysis of the retina and optic disc.

Retina and Disc QuickVue Reports

FAZ Trend Report

Retina Trend Report - Superficial and Deep Plexus

The Avanti Widefield OCT platform with AngioVue OCTA is available in a variety of configurations to meet the specific needs of your practice.

<table>
<thead>
<tr>
<th>Configurations</th>
<th>Avanti Widefield OCT</th>
<th>AngioVue Comprehensive</th>
<th>AngioVue Retina</th>
<th>AngioVue Essential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retina OCT</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>RNFL / Disc OCT</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Anterior Seg OCT</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Wellness</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Retina OCTA</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Optic Disc OCTA</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>OCTA Overview Report</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>OCTA Working Page</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>AngioAnalytics</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
AngioAnalytics Reports

AngioAnalytics reports enable quick and comprehensive analysis of the retina and optic disc.

Retina and Disc QuickVue Reports

FAZ Trend Report

Retina Trend Report - Superficial and Deep Plexus

The Avanti Widefield OCT platform with AngioVue OCTA is available in a variety of configurations to meet the specific needs of your practice.

<table>
<thead>
<tr>
<th>Avanti Widefield OCT</th>
<th>AngioVue Comprehensive</th>
<th>AngioVue Retina</th>
<th>AngioVue Essential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retina OCT</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>RNFL / Disc OCT</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Anterior Seg OCT</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Wellness</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Retina OCTA</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Optic Disc OCTA</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>OCTA Overview Report</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>OCTA Working Page</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>AngioAnalytics</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Images courtesy of Prof. Rufino Silva, MD, PhD
Specifications

TECHNICAL SPECIFICATIONS

- **OCT Scanning Speed**: 70,000 A-scans per second
- **Optical Axial Resolution**: ~5 microns (digital pixel sampling = 3 μm)
- **Optical Transverse Resolution**: ~15 microns
- **OCT Axial Imaging Depth**: 2 to 3 mm (dependent on scan protocol)
- **AngioVue Imaging Volume**: 304 x 304 A-scans (for non-HD scans)
 400 x 400 A-scans (for HD scans)
- **Acquisition Time Per OCTA Imaging Volume**: ~3 seconds
- **AngioVue Imaging Size (Retina)**: 3x3mm, 6x6mm HD, 8x8mm
 (AngioVue Essential includes 6x6mm scan only)
- **AngioVue Imaging Size (Optic Disc)**: 4.5x4.5mm HD, 6x6mm HD
- **Field of View**: 12x9mm

NETWORKING SPECIFICATIONS

- **Operating System**: Windows 7; 64-bit OS compatible
- **Hard Drive Availability**: Minimum 50GB
- **Processor Speed**: Minimum Intel i5
 Recommended Intel i7 3 GHz or higher
- **Computer RAM**: Minimum 8GB RAM
 Recommended 16GB RAM
- **Dedicated Graphics Card**: Not required
 Recommended NVIDIA GTX 970
- **Monitor Resolution**: 1920x1080, 1680x1050, 1600x1024, 1600x900
- **Network Bandwidth**: 1 Gbps or higher

TABLE SPECIFICATIONS

- **Width**: 950mm (37.4 inches)
- **Depth**: 600mm (23.6 inches)
- **Height (Adjustable)**: 695-995mm (27.4-35.2 inches)

Networking Solutions

- **NetVue Pro** allows viewing and modification of images from a single Optovue OCT system on up to eight review stations. In addition, with NetVue Pro, new patient scans may be captured while existing scans are reviewed.

- **NetVue Enterprise** enables viewing and modification of images from multiple Optovue OCT systems on up to 20 review stations.

- **NetVue Web** is a browser-based solution that brings Optovue OCT images to a smart phone, tablet or PC.

- **DICOM**. All Optovue products are DICOM-compliant, featuring C-store and Modality Worklist. Optovue products have successfully interfaced with several PACS, including government systems such as the Vista Imaging System.

- **NetVue Pro** allows viewing and modification of images from a single Optovue OCT system on up to eight review stations. In addition, with NetVue Pro, new patient scans may be captured while existing scans are reviewed.

- **NetVue Enterprise** enables viewing and modification of images from multiple Optovue OCT systems on up to 20 review stations.

- **NetVue Web** is a browser-based solution that brings Optovue OCT images to a smart phone, tablet or PC.

- **DICOM**. All Optovue products are DICOM-compliant, featuring C-store and Modality Worklist. Optovue products have successfully interfaced with several PACS, including government systems such as the Vista Imaging System.
Networking Solutions

- **NetVue Pro** allows viewing and modification of images from a single Optovue OCT system on up to eight review stations. In addition, with NetVue Pro, new patient scans may be captured while existing scans are reviewed.

- **NetVue Enterprise** enables viewing and modification of images from multiple Optovue OCT systems on up to 20 review stations.

- **NetVue Web** is a browser-based solution that brings Optovue OCT images to a smart phone, tablet or PC.

- **DICOM.** All Optovue products are DICOM-compliant, featuring C-store and Modality Worklist. Optovue products have successfully interfaced with several PACS, including government systems such as the Vista Imaging System.

TECHNICAL SPECIFICATIONS

- **OCT Scanning Speed**: 70,000 A-scans per second
- **Optical Axial Resolution**: ~5 microns (digital pixel sampling = 3 μm)
- **Optical Transverse Resolution**: ~15 microns
- **OCT Axial Imaging Depth**: 2 to 3 mm (dependent on scan protocol)
- **AngioVue Imaging Volume**
 - 304 x 304 A-scans (for non-HD scans)
 - 400 x 400 A-scans (for HD scans)
- **Acquisition Time Per OCTA Imaging Volume**: ~3 seconds
- **AngioVue Imaging Size (Retina)**
 - 3x3mm, 6x6mm HD, 8x8mm
 - (AngioVue Essential includes 6x6mm scan only)
- **AngioVue Imaging Size (Optic Disc)**
 - 4.5x4.5mm HD, 6x6mm HD
 - 12x9mm

NETWORKING SPECIFICATIONS

- **Operating System**: Windows 7; 64-bit OS compatible
- **Hard Drive Availability**: Minimum 50GB
- **Processor Speed**: Minimum Intel i5
 - Recommended Intel i7 3 GHz or higher
- **Computer RAM**: Minimum 8GB RAM
 - Recommended 16GB RAM
- **Dedicated Graphics Card**: Not required
 - Recommended NVIDIA GTX 970
- **Monitor Resolution**: 1920x1080, 1680x1050, 1600x1024, 1600x900
- **Network Bandwidth**: 1 Gbps or higher

TABLE SPECIFICATIONS

- **Width**: 950mm (37.4 inches)
- **Depth**: 600mm (23.6 inches)
- **Height (Adjustable)**: 695-995mm (27.4-35.2 inches)
OPTOVUE EXCLUSIVES:

- Focal loss volume (FLV) analysis for glaucoma
- Total Cornea Power (TCP) for anterior segment surgery
- Vessel Density with trend analysis for the macula (including deep plexus) and disc
- Split-spectrum technology (SSADA) on OCTA scans
- 3D Projection Artifact Removal
- DualTrac Motion Correction Technology

FIND A DISTRIBUTOR:

Find your local Optovue distributor:

optovue.com/contact