Tradition and Innovation – Since 1858, visionary thinking and a fascination with technology have guided us to develop innovative products of outstanding reliability: Anticipating trends to improve the quality of life.

OCTOPUS 600
Perimetry simplified
In 1972 Franz Fankhauser and others developed the principles and concepts of automated perimetry which resulted in the design of the first automated static perimeter, the Octopus 201, in 1974. Since then, Octopus has pioneered many significant innovations like the G-pattern, the direct projection system, fast strategies and outstanding software for visual field analysis.

Detecting visual field loss at the earliest possible stage, defining the optimum treatment and following up the patient to decide on the necessity of treatment changes or surgery are the main tasks of every glaucoma specialist. Addressing these basic needs, Haag-Streit has introduced the Octopus 600 that combines early diagnosis and follow-up in a single compact-sized, standalone device with improved ergonomics both for operator and patient.

The device makes it possible to run standard central fields with minimum test duration, seamlessly integrated into your practice environment. This supports high patient throughput and effective practice management. With its built-in reliability features, the Octopus 600 is easy to use and delivers results you can trust.
Fast screening

Distinguish between normal and abnormal visual fields in less than a minute with the novel Glaucoma Screening Test.

Central field standard white-on-white perimetry

The Octopus 600 performs standard white-on-white threshold testing in just 2–4 minutes in the central visual field. A wide range of commonly used static test patterns, including G, 32, 30-2, 24-2, M, and 10-2 are also incorporated into the Octopus 600.

Perimetry simplified

The compact Octopus 600 can be operated reliably outside of a darkroom and fits almost anywhere. With its improved usability and ergonomics, it truly simplifies perimetry both for the operator and the patient.

Reliable results made easy

Worry less about patient compliance. The Octopus 600 automatically recognises fixation losses and continuously supports the correct patient and eye position for a reliable result you can trust.
OCTOPUS 600
Expert in fast screening and follow-up

With the Octopus 600, Haag-Streit has introduced a new perimeter that combines both fast screening with the novel Pulsar stimulus and standard white-on-white perimetry for follow-up in one device. As a result, the instrument is capable of covering the most important stages of disease progression, allowing both for early diagnosis and follow-up.

The Octopus 600 employs a new perimetry technology that makes use of a TFT-based monitor to produce stimuli and background. This allows the instrument to display complex stimuli such as Pulsar, which would otherwise not be possible with cupola-based or projection type perimeters.
GLAUCOMA SCREENING TEST

Fast screening

Distinguish between normal and abnormal visual fields in less than a minute in healthy individuals. The test is purely qualitative and only distinguishes between normal and abnormal visual fields by presenting stimuli three times at a brightness that patients with normal vision should see. If never seen, then the visual field is flagged as abnormal with high reliability and the patient can be further tested.

Because the test is efficient, it opens doors for more routine visual field testing to ensure no pathology goes undetected.

PULSAR METHOD

The new pulse in perimetry

Pulsar is a patented flicker stimulus displaying a ring pattern especially developed for early glaucoma detection. The stimulus consists of two images, the phase and counterphase images that alternate with a frequency of 10 Hz over 500 ms. If flicker-sensitivity is reduced, the phase and counterphase images result in an overlapped image that is not visible anymore. By changing contrast and spatial resolution, full thresholds can be tested.

Because the proven Pulsar method tests flicker and contrast sensitivity that are affected in early glaucoma, the method has been shown to be both sensitive and specific in the detection of glaucoma\(^{3,4}\). This supports your correct diagnosis and allows you to start treatment in adequate time.

LOW TEST-RETEST VARIABILITY

Made easy for patients

Unlike other early diagnostic methods that challenge patients with hard-to-distinguish answering criteria, Pulsar is easy for patients to answer: seen or not seen. Additionally, thanks to its design, it is relaxing to look at. This makes Pulsar a simple – even pleasant – test to take for patients. As a result, it shows low test-retest variability and only a minimal learning effect\(^{5,6}\). These features make it a very suitable stimulus for screening purposes.
The Octopus 600 offers a wide range of static test patterns, including 32 (which corresponds with 30-2), 24-2, and 10-2. In addition, there are two unique physiology-based patterns: the G-Program (a 30-degree field for glaucoma assessment) and the M-Program (a 10-degree field for analysing the macula). They are both correlated with a nerve fibre bundle map and thus make it possible to test the points which are most important for a structure-function correlation. These examination patterns offer a higher density of stimuli in the centre, which supports the discovery of paracentral scotomas that are often missed by the common 32 pattern.

Combining the standard white-on-white perimetry with the Pulsar method for early glaucoma detection, the instrument is capable of covering the most important stages of disease progression, allowing for early diagnosis and follow-up.

Being the first perimeter employing a flicker-free TFT monitor, stimuli can be soundlessly presented for increased reliability of the visual fields.
TOP FAST-THRESHOLDING STRATEGY

Increased efficiency

Tendency Oriented Perimetry (TOP) presents a further optimisation in fast-threshold testing by reducing the examination time by nearly 80% to just 2–4 minutes compared to 6–8 minutes (Dynamic strategy) or 10–12 minutes (Normal strategy). The TOP algorithm is a systematic method which takes the correlation of the threshold values in neighbouring locations into account.

Since the first test points are presented at a supra-threshold level, even inexperienced patients quickly understand the nature of the test.

CLUSTER ANALYSIS

Providing meaningful results

Cluster analysis combines high sensitivity with good specificity. Test locations are grouped (clustered) along nerve fibre bundles, to better analyse changes in crucial areas such as the nasal step or the macula. This eliminates the time-consuming method of counting isolated points. A combined probability/deviation graph highlights pathological regions.

POLAR GRAPH

Combining structure and function

Combining the results of both structure and function (see picture: A) is key to obtaining a comprehensive assessment of the onset and progression of Glaucoma. With the Octopus Polar Graph, the nerve fibre bundles that are in danger or defective are easily identified. Local defects are projected along the nerve fibres to the optic disk and are represented as red lines (B). The projected defects (C, D) are vertically mirrored and scaled with rings for 10, 20 and 30 dB deviation (E). The Octopus Polar Graph allows for direct comparison with structural (F) findings.
08 | 09 PROGRESSION ANALYSIS

Immediately identify levels of change

EyeSuite Perimetry software is included as standard, featuring the most advanced EyeSuite Progression Analysis for following up visual fields. As recommended by the International Glaucoma Society, the global progression rate is calculated in dB per year, including the probability level. Areas for normal range (grey band), impaired vision (15 dB) and legal blindness (25 dB) provide a starting point for further investigation.

Often, progression is local and not noticeable on global progression analysis. No more counting of single points and looking for clusters. EyeSuite does the work for you! The EyeSuite Cluster Trend Analysis is based on specific “clusters” of test points that are matched to the nerve fibre bundles, while the Polar Trend Analysis allows direct comparison with structural findings. With these two local progression analyses, even small local changes that are not visible at a global level can be easily detected and followed up.[10,11]

Intuitive colour codes save time by immediately identifying levels of change. A red triangle will always indicate significant worsening, a yellow diamond increased fluctuation and a green triangle significant improvement.

VARIOUS PRINTOUTS

Intuitive interpretation of visual field results

Configure your favorite printout and graphics representation, in order to reduce the time necessary to interpret the results. Choose either the proven Octopus 7-in-1 printout containing the cumulative defect curve (Bebie curve) or the HFA-style printout. Furthermore, the 4-in-1 printout or the series report can also be customised.

Don’t want a paper copy? Save the report as an image or PDF and view it on your screen or export it to your electronic medical record (EMR) system.
Visual field evaluation is made simple with the widely-used Octopus 7-in-1 printout.
The Octopus 600 can be operated reliably outside of a darkroom and fits almost anywhere thanks to its small and compact design. Thanks to its user-friendly operator interface, running an examination becomes a matter of a few simple clicks on the large touch-screen examination screen.

Ergonomic design
Ample space and the adjustable forehead rest allow examined patients to wear their own glasses. The shielded side view prevents the patient from being distracted.

Large trial lenses
Large trial lenses facilitate correct patient positioning and are already included in the Octopus 600. Thanks to their magnetic holding mechanism, trial lens placement is easy.

New patient response button
The ergonomic response button fits nicely in the patient’s hand and is easy to use even for patients with arthritis. In addition, the button has been designed to create an improved audible and mechanical feedback.

Reliable operation outside of darkroom
The novel Octopus 600 can be operated reliably outside of a dark room thanks to its TFT screen for stimulus projection that is insensitive to ambient light. This allows the Octopus 600 to be located wherever there is space, while correct light conditions are hardly a consideration.

Thanks to its ergonomic patient response button, its user-friendly design and with large trial lenses already included, the Octopus 600 truly simplifies perimetry.
It fits anywhere

The Octopus 600 has a small, compact design allowing for a minimal footprint. Add in silent operation with no fans or motors and you have a perimeter that can be placed anywhere in your office.

Optional Chinrest for more convenience

The optional chinrest adds comfort for patients having problems maintaining the downward gaze position and increases the convenience for the examiner.

It just takes 3 steps:

1. Select patient
2. Choose Pulsar or standard white-on-white
3. Hit the start button
Fixation control

Reliable results made easy

Fixation losses due to low patient compliance are a major reason for unreliable visual fields. The Octopus 600 gives you less reason to worry about these. Blink Control, Pupil Position Control, Dart Control and Contact Control continuously support the correct patient and eye position for a reliable result you can trust.

BLINK CONTROL

Never miss a point

Normal blinking prevents dry eyes and helps the patient to relax and concentrate during examination. With Octopus Blink Control, you need never worry again about missing a stimulus presented in static perimetry. Stimuli interrupted by the patient’s blinking are automatically repeated later during the test. This means that every test location is tested reliably.

PUPIL POSITION CONTROL

Controlled position

Maintaining the correct pupil position during examination is essential for correct identification of the location of a defect. If the pupil position changes during stimulus presentation, due either to shifting of the head or eye movement, the Pupil Position Control pauses the examination automatically until the pupil is recentred. The missed stimulus is automatically repeated later during the test. The result is a visual field that you can trust.
DART CONTROL

Keep focused

Remaining focused on the fixation target at all times is essential to prevent fixation losses. If patients rapidly move their eyes to look for the next stimulus, Dart Control detects this fast movement and automatically interrupts the examination until a steady focus is achieved. Missed stimuli are automatically repeated later during the test making reliable results easy.

CONTACT CONTROL

Optimal patient position

Head sensors offer even further control and reliability by constantly assessing the correct patient position. If the patient pulls away from the instrument, it immediately notifies the operator and pauses the test to allow for repositioning.
The EyeSuite software is designed for optimum patient flows in busy practices. It is very easy to use, making the Octopus 600 fully networkable both with other Haag-Streit devices and your practice network. EyeSuite does not require any proprietary third-party software to provide connectivity.

If the Octopus 600 is connected to an EyeSuite Server, all of its data can be accessed remotely from any number of viewing stations connected to the same database. This truly means going beyond a pre-defined printout and provides you with real-time access to your data from anywhere in your network.

Furthermore, the EyeSuite Script Language or standardised interfaces, such as GDT or DICOM, connect easily to almost any electronic medical record (EMR) system. Patient orders can be received from the EMR system and the measured results are then automatically sent back to the EMR system.

With all these features available, you can save valuable staff time and eliminate the risk of transcription errors.
Technical specifications

Octopus 600

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Octopus 600 Basic</th>
<th>Octopus 600 Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulus generation</td>
<td>TFT Monitor</td>
<td></td>
</tr>
<tr>
<td>Peripheral range (distance)</td>
<td>30° (infinite)</td>
<td></td>
</tr>
<tr>
<td>Background illumination</td>
<td>SAP: 10 cd/m²; Pulsar: 32 cd/m²</td>
<td></td>
</tr>
<tr>
<td>Stimulus size (°)</td>
<td>SAP: 0.43 (Size III); Pulsar: 5</td>
<td></td>
</tr>
<tr>
<td>Stimulus duration (ms)</td>
<td>SAP: 100; Pulsar: 500</td>
<td></td>
</tr>
<tr>
<td>Stimulus intensity (asb, dynamic range)</td>
<td>SAP: ~35 dB; Pulsar: ~35 src</td>
<td></td>
</tr>
<tr>
<td>Fixation control</td>
<td>Blink Control, Pupil Position Control, Dart Control, Contact Control</td>
<td></td>
</tr>
<tr>
<td>Networking</td>
<td>DICOM, EMR, Ethernet</td>
<td>/ (DICOM optional)</td>
</tr>
<tr>
<td></td>
<td>Connect to network printer</td>
<td>/ (DICOM optional)</td>
</tr>
<tr>
<td></td>
<td>Connect to shared folder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connect to remote database</td>
<td></td>
</tr>
<tr>
<td>Data Import</td>
<td>Octopus 101, 123, 300 and 900; HFA I and II</td>
<td></td>
</tr>
<tr>
<td>Measures (W x L x H)</td>
<td>467 × 508 × 500 mm; 18.4” × 20.0” × 19.7”</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>12.7 kg; 28.0 lbs</td>
<td></td>
</tr>
<tr>
<td>Test methods</td>
<td>Standard white-on-white perimetry SAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulsar perimetry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glaucoma screening test</td>
<td></td>
</tr>
<tr>
<td>Test strategies</td>
<td>TOP (Tendency Oriented Perimetry, 2–4 min)</td>
<td>Pulsar, Pulsar, SAP</td>
</tr>
<tr>
<td></td>
<td>Dynamic (adaptive step size, 6–8 min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal (4-2-1 bracketing, 10–12 min)</td>
<td></td>
</tr>
<tr>
<td>Test patterns</td>
<td>General/Glaucoma 30°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(G1-Program, 32 (corresponding to 30-2), 24-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macula (M-Program, 10-2)</td>
<td></td>
</tr>
<tr>
<td>Progression analysis</td>
<td>Global progression (MOD, SLV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cluster Trend/Polar Trend</td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>Chinrest</td>
<td>○</td>
</tr>
</tbody>
</table>

Standard ○ Option □ Not available

Sources
