INSTRUCTIONS FOR USE
Applanation tonometer

AT 900® D

17. Edition / 2017 – 03
INSTRUCTIONS FOR USE
Applanation tonometer

AT 900® D

17. Edition / 2017 – 03

Introduction
Thank you for choosing a HAAG-STREIT device. Provided you comply carefully with the regulations in this instructions for use, we can guarantee the reliable and unproblematic use of our product.

Purpose of use
The Goldman digital tonometer is an appliance that serves to measure intraocular pressure, according to the Goldman method. The measuring of the pressure requires to maintain a uniform applanation of the surface of the cornea. It is specially indicated in Glaucoma disease.

Contraindication
There is no absolute contraindication for execution of the tonometry. Appropriate professional assessment and caution are necessary.

WARNING!
Applanation tonometry may only be conducted by appropriately trained and qualified medical personnel.

WARNING!
Read the instruction manual carefully before commissioning this product. It contains important information regarding the safety of the user and patient.

NOTE!
Federal law restricts this device to sale by or on the order of a physician or licensed practitioner.
Contents

1. Safety ... 4
 1.1 Areas of application of the device 4
 1.2 Ambient conditions 4
 1.3 Shipment and unpacking 4
 1.4 Installation warnings 4
 1.5 Operation, environment 4
 1.6 Disinfection ... 5
 1.6.1 Cleaning and disinfection of the measuring prism 5
 1.6.2 Visual inspection of the measuring prisms for damages 5
 1.6.3 Service life of reusable measuring prisms 6
 1.6.4 Tonosafe .. 6
 1.6.5 Monthly device checks 6
 1.7 Warranty and product liability 6
 1.8 Symbols .. 6

2. Introduction .. 7
 2.1 Overview ... 7
 2.2 System components 7
 2.3 Bluetooth adapter (optional) 7

3. Appliance assembly / installation 7
 3.1 Model R .. 7
 3.2 Model T .. 7
 3.3 Model BQ ... 7
 3.4 Which slit lamp with which tonometer 8
 3.5 Description models 8
 3.6 Magnet unit for automatic L/R detection 8

4. Commissioning .. 8
 4.1 Switching the device on and off 9
 4.2 Programming the settings 9
 4.3 LED indicator ... 9
 4.4 Setting the display brightness 9
 4.5 Adjusting the volume 9
 4.6 Bluetooth™ function 9
 4.7 Battery status 10

5. Operation .. 10
 5.1 Measuring tips 10
 5.2 Astigmatism ... 10
 5.3 How pressure is measured 10
 5.4 Preparing the patient 10
 5.5 Patient instructions 10

6. Software / Help menu / Error messages 13
 6.1 Error messages on the tonometer display 13

7. Technical data ... 14

8. Maintenance .. 14
 8.1 Repairs .. 14
 8.2 Cleaning and disinfection 14
 8.3 Checking the tonometer 15
 8.4 Changing the battery 16

A. Appendix ... 17
 A.1 Accessory original HAAG-STREIT measuring prism 17
 A.2 Accessory tonosafe 17

B. Legal regulations .. 17

C. Classification ... 17

D. Disposal .. 17

E. Standards ... 17

F. Information and manufacturer's declaration
 regarding electromagnetic compatibility (EMC) 18
 F.1 General .. 18
 F.2 Emitted interference (standard table 1) 18
 F.3 Immunity (standard table 2) 19
 F.4 Immunity for non-life-support devices (standard table 4) 20
 F.5 Safe distances for non-life-supporting devices (standard table 6) 21

1. Safety

DANGER!
Failure to comply with these instructions may result in material damage
or pose a danger to patients or users.

WARNING!
These warnings must absolutely be complied with to guarantee
safe operation of the device and to avoid any danger to users and
to patients.

NOTE!
Important information: please read carefully.

1.1 Areas of application of the device
The device is intended for use in doctor's practices, hospitals, and optometrists' and
opticians' premises.

1.2 Ambient conditions
Transport: Temperature from $-40^\circ C$ to $+70^\circ C$
Air pressure from 500 hPa to 1060 hPa
Relative humidity from 10% to 95%

Storage: Temperature from $-10^\circ C$ to $+55^\circ C$
Air pressure from 700 hPa to 1060 hPa
Relative humidity from 10% to 95%

Use: Temperature from $+10^\circ C$ to $+35^\circ C$
Air pressure from 800 hPa to 1060 hPa
Relative humidity from 30% to 90%

1.3 Shipment and unpacking
* Before you unpack the appliance, check whether the packaging shows traces of
incorrect handling or damage. If this is the case, notify the transport company that
has delivered the goods to you. Unpack the equipment together with a represen-
tative of the transport company. Make a report of any damaged parts. This report
must be signed by you and by the representative of the transport company.
* Leave the device in the packaging for a few hours before unpacking it (conden-
sation).
* Check the appliance for damage after it is unpacked. Return defective applian-
ces in the appropriate packaging.

* Store packaging material carefully, so that it can be used for possible returns or
when moving.

NOTE!
Check the calibration of the instrument before first use according to the
instructions in section 8.3.

1.4 Installation warnings

WARNING!
* Do not modify this equipment without authorization of the manufac-
turer. Installation and repairs may only be performed by trained spe-
cialists.
* Any third-party device must be connected in compliance with the EN
60601-1 standard.
* The optional magnet unit for automatic L/R detection may only be
used with the . Other measuring devices, especially mechanical to-
ometers, may be affected by the strong magnetic field.
* The device must not be stacked or placed in close proximity to other
electronic devices.

NOTE!
* When performing assembly on appliances from other manufacturers,
the connecting dimensions of the diverse tonometer models are to be
taken into account!
* Check: Are the connection parts properly positioned (tonometer on
the slit lamp, measuring prisms)?

1.5 Operation, environment

WARNING!
* The examination is to be performed at the medical professional's dis-
cretion and consideration in cases of active infections and lesions of
the eye. Certain conditions could falsify measured values and the pro-
cedure may interfere with the patient's condition.
* Use only original HAAG-STREIT Goldmann tonometer measuring
prisms or the sterile disposable measuring prisms TonoSafe from
HAAG-STREIT.

NOTE!
This appliance must only be operated by qualified and trained person-
nel. The owner is responsible for their training.
1.6 Disinfection

NOTE!
The device does not need to be disinfected. For more information on cleaning, please refer to the 'Maintenance' chapter.

1.6.1 Cleaning and disinfection of the measuring prism

DANGER!
The measuring prisms are made of PMMA. Please take note of the following restrictions:
- Do not disinfect with alcohol
- Do not clean with acetone
- Do not disinfect using UV radiation
- Do not sterilise using steam or ethylene oxide
- Do not expose to temperatures above 60°C

WARNING!
Reusable measuring prisms are not shipped disinfected and must be cleaned and disinfected before their first use in accordance with the separate instructions for use on the cleaning and disinfection of tonometer measuring prisms, contact glasses, and DESINSET (HS item no. 7220315).
* Preparation may only be conducted by qualified and trained personnel. Their training is the responsibility of the user.
* Appropriate professional assessment and caution are necessary.
* Only use clean, undamaged, and disinfected measuring prisms!
* Please observe the separate instructions for use on the cleaning and disinfection of tonometer measuring prisms, contact glasses, and DESINSET (HS item no. 7220315)!
* The operator shall be liable in the event of non-observance of the cleaning and disinfecting process!

NOTE!
* Only those disinfectants tested by HAAG-STREIT for material compatibility may be used for disinfection.
* The current list is enclosed with every tonometer and measuring prism, and can also be found on the HAAG-STREIT AG website (www.HAAG-STREIT.com).
* The separate instructions for use on the cleaning and disinfection of tonometer measuring prisms, contact glasses, and DESINSET is to be consulted regarding the exact functioning, concentration, working times, and idle times.
* Improper preparation can result in the transmission of diseases to the patient and user as well as damage to the measuring prism.
* Residue from cleaning agents and disinfectants may irritate and burn the patient’s eye.
* As a rule, the measuring prisms may be prepared together with each other, but not with any other products.
* In order to achieve a efficient disinfection and storage of tonometer measuring prisms, we recommend the use of our DESINSET. For a selection of cleaning and disinfection agents please refer to the instructions for use “Cleaning and disinfection” and to our “List of Disinfectants”. The efficacy of the disinfectants on tonometer measuring prisms must be guaranteed by the user or the reprocessing responsible person with the validation of their own disinfection process.
* The validation report is available from HAAG-STREIT on request.
* A summary of the validation report can be found on the HAAG-STREIT website (www.HAAG-STREIT.com).
* The operator accepts liability for the use of other disinfectants.
* Single-use prisms must be replaced after every examination - see separate instructions for use.
* The instructions for use referred to above, the brief instructions on the disinfection of tonometer measuring prisms and additional information can be found on our website www.HAAG-STREIT.com at any time.

1.6.2 Visual inspection of the measuring prisms for damages

DANGER!
Never use damaged measuring prisms.
Prior to every use, the contact surface of the measuring prism must be inspected for contaminants or damage (scratches, cracks and sharp edges). This must be performed with a slit lamp microscope at 10x to 16x magnification.
1.6.3 Service life of reusable measuring prisms

WARNING!

How long can measuring prisms be used?
Due to the large number of variables to be considered (type and concentration of the disinfectant used, number of patients, handling, etc.) it is practically impossible to provide exact information on how often and/or how long a measuring prism can be used under safe conditions. The measuring prisms are stamped with an expiry date (YYYY-MM). They must not be used beyond this date. HAAG-STREIT recommends a maximum service life of two years before the expiry date. This service life applies subject to normal conditions of use, i.e., in compliance with the instructions contained in these instructions for use. The service life starts with the first use. The above-mentioned time periods do not apply to damaged measuring prisms; these must be immediately replaced.

![Service Life Diagram]

Year:

- First use
- Service life: Maximum two years
- Replace

1.6.4 Tonosafe

NOTE!

Tonosafe was developed to avoid the necessary cleaning and disinfection of measuring prisms from applanation tonometers. Tonosafe is a disposable applanation and optical duplication prism for Goldmann and Perkins applanation tonometers, for single use. Additional details can be found in the separate instructions for use.

1.6.5 Monthly device checks

The tonometer must be checked on a monthly basis as described in the ‘Maintenance’ chapter. A check will be absolutely necessary if external force is applied (e.g., striking or dropping the appliance).

NOTE!

If a repair is necessary, please contact your HAAG-STREIT representative.

1.7 Warranty and product liability

- Haag-Streit products must be used only for the purposes and in the manner described in the documents distributed with the product.
- The product must be treated as described in the ‘Safety’ chapter. Improper handling can damage the product. This would void all guarantee claims.
- Continued use of a product damaged by incorrect handling may lead to personal injury. In such a case, the manufacturer will not accept any liability.
- Haag-Streit does not grant any warranties, either expressed or implied, including implied warranties of merchantability or fitness for a particular use.
- Haag-Streit expressly disclaims liability for incidental or consequential damage resulting from the use of the product.
- This product is covered by a limited warranty granted by your seller.

For USA only:
- This product is covered by a limited warranty, which may be reviewed at www.haag-streit-usa.com.

1.8 Symbols

- Read the instructions for use attentively
- General warning: Read the accompanying documentation
- Disposal instructions. See “Disposal” section.
- Test symbol of CSA with approval for USA
- European certificate of conformity
- Manufacturer
- Year of production
- Serial number
- HS reference number
- Product classification Type B

2. **Introduction**

The applanation tonometer functions according to the ‘Goldmann method’: measurement of the pressure required to maintain a uniform applanation of the surface of the cornea. The precise measurement of the applanation surface is conducted with the slit lamp at 10x magnification.

The pressure measurement is conducted on a slit lamp with the patient sitting down and is a routine test carried out as part of the standard slit lamp microscopy.

2.1 **Overview**

1. Measuring prisms (application part)
2. Sensor arm
3. Battery compartment lid
4. Battery compartment locking mechanism
5. Type plate (bottom side)
6. Function key
7. Insert for control weight
8. Digital display
9. Knob
10. Bluetooth adapter (optional)

2.2 **System components**

The Applanation Tonometer system is composed of the following devices:

* Applanation Tonometer
* Bluetooth adapter (optional)
* PC or laptop

2.3 **Bluetooth adapter (optional)**

There is an optional Bluetooth adapter available to transfer the measured data directly to the patient management of the Eyesuite software. The activation of the Bluetooth function is described in Chapter 4.6. The description of the software installation can be found in the EyeSuite Setup Manual, the usage instructions for the Bluetooth adapter and the description of the error messages are included in the Help section of the software. The help can be opened via the F1 key or in the [?] - [Help] menu.

3. **Appliance assembly / installation**

WARNING!

Installation, repairs and modifications may only be performed by trained specialists.

3.1 **Model R**

A pivot is required for use of the Applanation Tonometer model R on the BM 900 slit lamp. It is assembled as follows:

1. Unscrew the mounting screw found at the top, on the microscope’s middle cylinder housing.
2. Leave the spring in the aperture.
3. Position and screw on tightly the pivot for the tonometer.
4. Place the tonometer bearer arm on the pivot's pin and swivel the tonometer to the right until it snaps into position. The tonometer will remain in this position even when not in use.
5. When using the BI 900, BM 900 and BM 900 V, the stop peg must be assembled (a), and when using the BC 900 or BD 900, it must be removed (b).

3.2 **Model T**

The Applanation Tonometer is tucked into one of the holes on the horizontal guide plate over the slit lamp axis using the peg from the tonometer base.

3.3 **Model BQ**

Connect the tonometer at the provided interface to the right side of the microscope arm.

NOTE!

The cover screw on the left side of the arm is loosened by turning it in a clockwise direction using the screwdriver (applies only for late tonometer deliveries).
3.4 Which slit lamp with which tonometer

- **Model R**
 - BD 900
 - BM 900
 - BI 900
 - BP 900
 - BQ 900
 - BX 900

- **Model T**
 -

- **Model BQ**
 -

3.5 Description models

- The Applanation Tonometer **model R** can be left on the slit lamp permanently. It is fastened to the microscope on a mounting base and swiveled in front of the microscope for the examination. The observation of the planated surface is conducted monocularly – only through the left eyepiece.

- The Applanation Tonometer **model T** is set on the guide plate over the slit lamp axis, for tonometry purposes. The instrument can be moved between two positions on the guide plate for observation through the right or left eyepiece. The sensor arm with the measuring prism projects from the bottom side into the beam path of the microscope and the illumination.

- The Applanation Tonometer **model BQ** has a working position and two resting positions. To set the correct angle of incidence of the illumination, the tonometer is swiveled and the illumination apparatus is positioned to the left of the tonometer bracket. The patient’s left and right eyes can be easily examined in this position (no 60° position). The planated surface is observed monocularly through the right eyepiece of the stereo microscope.

3.6 Magnet unit for automatic L/R detection

The magnet unit for the AT 900 D in combination with the EyeSuite Tonometry software makes it possible to display the intraocular pressure (IOP) and the information on the eye in which the pressure was measured.

PROHIBITED

The magnet unit may not be used with conventional mechanical Goldmann applanation tonometers, as the magnets can cause erroneous results with these instruments.

NOTE!

The magnet unit cannot be used with the attachment cart with rail for the Hruby lens. If you have this type of attachment cart affixed on your head rest, please remove it.

- For metal chin rests (13), screw the magnet unit directly into the rear, closer together holes on the chin rest using the knurled screws.
- For plastic chin rests (14), screw the two spacer sleeves into the provided threaded sockets on the chin rest first and then affix the magnet unit into the external holes on the spacer sleeves using the knurled screws.
- Check that you can still see the bottom side label (15) after assembly when you view the chin rest from below.

4. Commissioning

WARNING!

It is imperative to read the ‘Safety’ section and observe its precautions before operating the equipment.

4.1 Switching the device on and off
Switch the tonometer on by pressing the function key briefly. We recommend checking the display elements regularly to ensure they are functioning when switching the tonometer on. [8.8.8] appear shortly and then each individual LED segment lights up, following by the software version: a 3-digit number. At the same time, the red and green displays will flash alternately. If a display value appears after that, then the device is ready for use. The digital display lights up and displays the set tonometer value. The tonometer switches off automatically after 90 seconds if no adjustments are made. If the Bluetooth™ function is disabled (Section 5), the tonometer can also be switched off by pressing the function key.

4.2 Programming the settings
The display brightness, volume and Bluetooth function can be changed. Press the function key and hold it down for 2 seconds to access the programming mode. The functions can be set in the following order according to the following points:
1. Display brightness
2. Volume
3. Bluetooth function

4.3 LED indicator
The LED below the display value is used to check whether the measuring prism is within the permitted measuring range during measurement. It lights up red as long as the tonometer is not in contact with the cornea and changes to green as soon as the measuring prism makes good contact with the cornea. If the tonometer is too close to the eye, the color changes back to red and a warning tone alerts the user to the fact that he/she has gone outside of the measuring range and the sensor is in the safety distance. The measuring range is between 3 and 75 mm Hg. Above

4.4 Setting the display brightness
Hold the function key depressed for approx. 2 seconds. The display shows [- - -] (three dashes) and a signal sounds. Release the function key again. [br] appears on the display, along with the brightness setting 1 to 3. The brightness is adjusted by pressing the function key briefly. We recommend leaving the device in the basic setting [br1] to ensure long battery life.

4.5 Adjusting the volume
Hold the function key depressed for approx. 2 seconds. The display shows [- - -] (three dashes) and a signal sounds. Release the function key again. [Ld] appears on the display, followed by levels 1 to 6. The volume is adjusted by pressing the function key briefly.

4.6 Bluetooth™ function
Keep the function key depressed for approx. 2 seconds to switch to the Bluetooth™ function menu. Pressing the function key briefly switches the Bluetooth™ function on [bon] / off [boF]. This function can only be used together with the HAAG-STREIT Bluetooth™ adapter (102623) and the corresponding software. Detailed information can be found in the corresponding operating instructions. Disable the function [boF] if you do not require it, in order to avoid wasting the batteries’ power. Pressing the function key for more than two seconds returns you to the normal measuring mode. The normal measuring mode can also be reached by waiting until the device switches itself off and then switching it back on again.
4.7 Battery status
If [bAt] appears in the display instead of a numerical value when the device is switched on, then the batteries should be replaced immediately (4x commercially available 1.5V LR03 (AAA) batteries). You can continue measuring until the tonometer switches off automatically.

5. Operation

5.1 Measuring tips

WARNING!
Reusable measuring prisms must be cleaned and disinfected after every examination.

5.2 Astigmatism

* If the cornea is spherical, measurements can be taken on any meridian, but it is most convenient to measure on the 0° meridian.
* However, the choice of meridian is significant when measuring eyes with corneal astigmatism greater than 3 dioptres, since the flattened area is not circular, but elliptical.
* It has been calculated that, in cases of greater corneal astigmatism, a surface of 7.354 mm² (ø 3.06 mm) is applanated if the measuring prism is at an angle of 43° (A) to the meridian of the greatest radius.

Example: If the corneal astigmatism measures 6.5 mm / 30° = 52.0 dpt / 30° and 8.5 mm / 120° = 40.0 dpt / 120°
the 120° graduation mark on the prism is set on the mark (A) of the prism holder.

If, on the contrary, the measurements are 6.5 mm / 120° = 40.0 dpt / 120° and 8.5 mm / 30° = 52.0 dpt / 30°
then the 30° graduation mark is set on the mark (A), meaning that simply the axis position of the largest radius is placed on the mark (A).

5.3 How pressure is measured

The applanation tonometer functions according to the 'Goldmann method': measurement of the pressure required to maintain a uniform applanation of the surface of the cornea.

* The readings obtained are based on the assumption that a cornea with a ‘normal’ thickness is being measured; a different corneal thickness leads to changes in the measured IOP. A ‘normal’ corneal thickness is considered to fall within the range of 530 to 560 micrometers.
* If it is suspected that measuring results may be inaccurate, please conduct a functional verification in accordance with the ‘Maintenance’ chapter.

5.4 Preparing the patient

NOTE!
A smooth operation can only be guaranteed with the use of original HAAG-STREIT measuring prisms and Tonosafe.

1. Anaesthetise each eye
2. Apply Fluorescein into the eye to be examined
3. The correct eye height of the patient can be set via the chin rest.

5.5 Patient instructions

1. Press the head firmly against the chin and forehead rests.
2. The patient must look straight forward. If necessary, the small fixing light can be used to steady the eyes.
3. It is recommended that the patient be repeatedly reminded to keep his eyes open wide during the examination. It might be necessary for the examiner to keep the eye open by splaying the eyelids with thumb and index finger.
4. This must be done without applying any pressure to the eye.

5.6 Preparation of slit lamp and tonometer

For all HAAG-STREIT slit lamps and tonometers

1. Before the examination, the eyepieces must be adjusted correctly to the examiner.
2. Set the magnification to 10x.
3. Adjust the illumination to medium intensity.
4. Position the blue filter in the beam path of the slit lamp’s illumination apparatus and open the slit diaphragm fully.
5. Insert the disinfected measuring prism into the (0° position) holder on the sensor arm. For Tonosafe, see the separate instructions for use.

6. Snap the sensor arm into place so that the axes of the measuring prism and of the microscope align.

7. Switch on the tonometer and set a value between 5 and 10 mm.

Model R and model BQ

1. Swing the illumination apparatus to the left.
2. Release the tonometer from the dwell position to the right of the microscope, and swing it forward until it locks in the measuring position.
3. From the left, bring the illumination apparatus into contact with the tonometer bearer arm. This is the only illumination position in which both the patient's left and right eyes can be easily examined (no 60° position). This arrangement facilitates the splaying of the patient's eyelids, should this be necessary for measurement. The illumination of the applanated surface through the measuring prism is practically reflection-free.

Observation:
- with model R in the left eyepiece
- with model BQ in the right eyepiece

Model T

1. For an examination through the tonometer's left or right eyepiece, the angle between the illumination instrument and the microscope should be approx. 60° so that the image is bright and reflection-free. Alternatively: lighting through the measuring prism at approx. 10°.

5.7 Measuring correctly

1. Immediately before taking measurements, the patient should close his eyes briefly so that the cornea becomes sufficiently moistened with fluorescein-impregnated tear fluid.
2. By moving the slit lamp, the measuring prism comes into contact with the center of the cornea over the pupillary area.
3. During contact, the cornea's limbus takes on a bluish glow. This glow can be best observed with the naked eye from the opposite side of the illumination apparatus.
4. When the limbus glows, stop moving the slit lamp immediately.
5. After contact is made, viewing is conducted through the microscope. The uniform pulsation of the two semi circular fluorescein bands, which could be of different sizes in drum setting 1 depending upon inter-ocular pressure, shows that the tonometer is in the right measuring position.
6. Any necessary corrections are done using the slit lamp control lever, until the flattened surface is observed in the form of two semicircles of similar size in the middle of the visual field (A).

7. Smaller changes in the depth of the slit lamp using the control lever do not affect the size of the semicircles.
8. The pressure on the eye is increased by turning the tonometer knob until the inner borders of both fluorescein bands just touch = correct setting (B).
9. When the eye pulsates, both semi circles cross over each other.
10. The width of the fluorescein band around the contact point of the measuring prism should be about 1/10 of the diameter of the applanation surface (0.3 mm).
11. Display value in mm Hg.

(A) ![Image](A)
(B) ![Image](B)

NOTE! If the tonometer is too close to the eye, the color of the LED changes to red and a warning tone alerts the user to the fact that he has left the measuring range and the sensor is in the safety distance.

5.8 Sources of error

<table>
<thead>
<tr>
<th>Ocular images</th>
<th>Fluorescein band incorrect</th>
<th>Wrong distance to patient</th>
<th>Position too far to the right/left</th>
<th>Position too high/low</th>
<th>Incorrect pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 – 2</td>
<td>3 – 9</td>
<td>5 – 9</td>
<td>10 – 14</td>
<td>15 – 18</td>
</tr>
</tbody>
</table>
Fluorescein band too wide (1)
The measuring prism was not dried after cleaning or the eyelids came into contact with the measuring prism during measurement.

The slit lamp must be pulled back and the measuring prism dried with a lint-free cloth (e.g., made of cellulose).

Fluorescein band too small (2)
The tear fluid has dried up during a prolonged measuring process.

Allow the patient to close his/her eyes a few times and then repeat the measurement.

5.8.1 Incorrect distance to the patient
No semicircular image, only center line is visible (3)
The measuring prism is not coming into contact with the cornea! If the patient draws his/her head back slightly, irregular pulsations will be caused because the measuring prism is touching the eye only intermittently. If the patient pulls back even further, the fluorescein rings will disappear completely.

Instruct the patient to adopt the correct position.

Only parts of both oversize semicircles are visible (4)
If the slit lamp is pushed too far against the patient, or if the patient moves toward the slit lamp, the sensor arm will push against a spring stop. The applanation surface is too large.

The image does not change when the tonometer knob is turned. Pull the slit lamp back until the uniform pulsations of a correspondingly smaller surface show the correct measuring position and pressure changes immediately cause applanation surface changes.

5.8.2 Position too far to the right/left
Only part of the upper semicircle (5)
Measuring prism not centered on the eye, eye much too far to the right.

Using the control lever, move the slit lamp to the right.

Whole upper semicircle – part of the lower semicircle (6)
Measuring prism not centered on the eye, eye still too far to the right.

Using the control lever, move the slit lamp to the right.

Whole lower semicircle – part of the upper semicircle (7)
Measuring prism not centered on the eye; eye still too far to the left.

Using the control lever, move the slit lamp to the left.

Only part of the lower semicircle (8)
Measuring prism not centered on the eye; eye much too far to the left.

Using the control lever, move the slit lamp to the left.

Correct setting! (9)
Two semicircles appear exactly in the middle of the eyepiece.
5.8.3 Position too high/low

Only part of a semicircle in the upper half (10)
Measuring prism not centered on the eye; eye far too high.

Using the control lever, move the slit lamp upwards.

Nearly entire circle above, incomplete circle below (11)
Measuring prism not centered on the eye; eye still too high.

Using the control lever, move the slit lamp upwards.

Two incomplete circles, the larger one on top (12)
Measuring prism not centered on the eye; eye still too high.

Using the control lever, move the slit lamp upwards.

Correct setting! (13)
Two semicircles appear exactly in the middle of the eyepiece.

5.8.4 Incorrect pressure

The outside borders of the fluorescein bands are in contact with each other (14)
Not enough pressure.

Increase the pressure slightly by rotating the knob on the tonometer.

Fluorescein bands are superimposed to form a band (15)
Pressure slightly too low.

Increase the pressure slightly more by rotating the knob on the tonometer.

Bands are no longer in contact (16)
Pressure is too high.

Lower the pressure by rotating the tonometer knob in the opposite direction.

Correct setting! (17)
The inside borders of the fluorescein bands are contacting each other.

6. Software / Help menu / Error messages

The software's help section contains instructions and help for performing an examination and descriptions of the error messages. The help can be opened via the F1 key or in the [?] - [Help] menu.

WARNING!
The software must be installed by trained personnel in accordance with separate installation instructions.

6.1 Error messages on the tonometer display

<table>
<thead>
<tr>
<th>Description</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO2</td>
<td>The measurement is outside the permitted tolerances. If one of these errors appears permanently, send the device to the corresponding service branch.</td>
</tr>
<tr>
<td>EO6</td>
<td>The position of the sensor arm is defective.</td>
</tr>
<tr>
<td>EO7</td>
<td>The minimum operating voltage has not been achieved; the device switches off. Replace the dead batteries.</td>
</tr>
<tr>
<td>EO8</td>
<td>Battery voltage too high. Incorrect battery type fitted. Insert the correct batteries.</td>
</tr>
</tbody>
</table>
7. Technical data

Generation of measuring force through leverage weight.

Measurement range 5 — 70 mm Hg

The measurement deviation in the measuring prism is in the measuring range from 4.91 — 58.84 mN and amounts to a maximum of ±1.5% and to a minimum of ±0.49 mN of the nominal value.

Backlash width ≤0.49 mN

Net weight

- model R 0.500 kg (without accessories)
- model T 0.330 kg (without accessories)
- model BQ 0.550 kg (without accessories)

Batteries 4 x LR03 (AAA) 1.5 V

Bluetooth Contains TX IC: 1520A-LMX9838
Contains TX FCC ID: EDQLMX9B38

8. Maintenance

WARNING!
Installation, repairs and modifications may only be performed by trained specialists.

8.1 Repairs

To ensure a long service life, the device must be cleaned every week as described and covered with a dust cover when not in use. We recommend having the device checked annually by an authorised service technician.

8.2 Cleaning and disinfection

Tonometer housing and Sensor arm can, if required, be carefully wiped down with ready-for-use disposable 70% ethanol disinfectant wipes. Surface-friendly disinfectants (containing or not containing aldehyde) are also permitted, such as Kohrsolin FF.

WARNING!
- The preparation instructions provided do not apply to tonometer measuring prisms!
- The tonometer measuring prisms must be prepared according to a separate manual.
- Do not use sprays
- Observe the manufacturer’s safety instructions
- Do not use any cloths that might drip.
- Wring out any soaked cloths completely before use wherever necessary
- Ensure that no liquid penetrates into the device
- Comply with the stipulated exposure time

NOTE!
IP code: IPX0 (device is not protected against liquids)
8.3 Checking the tonometer

NOTE!
This check must be carried out once a month. If the check yields erroneous results, please check the following points:

1. Is the measuring prism properly positioned?
2. Is the control weight correctly set?
3. Repeat the check.
Defective equipment must be sent immediately to your HAAG-STREIT representative.

NOTE!
HAAG-STREIT offers a repair and service package. For further information, please contact your HAAG-STREIT representative directly.

Test at 20 mm Hg
A control weight is used for the check. The weight rod is engraved with five rings. The middle ring corresponds to 0 mm Hg, the rings immediately to its left and right correspond to a value of 20 mm Hg, and both outside scale rings have a value of 60 mm Hg.

One of the test position marks (20 or 60 mm Hg) is set exactly to the index line on the holder. The weight is fitted on the feeler axis (a) so that the longer part points to the examiner.

Check position 19.5
The sensor arm must not move from the free-movement area toward the limit stop in the direction of the examiner before the display shows 19.5 mm Hg or after the display shows 20.5 mm Hg.

Check position 20.5
The sensor arm must not move from the free-movement area toward the limit stop in the direction of the patient before the display shows 20.5 mm Hg or after the display shows 19.5 mm Hg.
Test at 60 mm Hg
Set the weight rod to 60 on the scale so that the longer part points to the examiner.

Check position 59
The sensor arm must not move from the free-movement area toward the limit stop in the direction of the examiner before the display shows 59.0 mm Hg or after the display shows 61.0 mm Hg.

Check position 61
The sensor arm must not move from the free-movement area toward the limit stop in the direction of the patient before the display shows 61.0 mm Hg or after the display shows 59.0 mm Hg.

8.4 Changing the battery

1. Push the HAAG-STREIT logo (HS) on the side of the digital display carefully downward and remove the battery lid by tilting it backward.
2. Pull the tab at the bottom of the battery compartment carefully. The batteries are released from the holder and can be easily removed.

WARNING!

* Pay attention to the polarity when inserting the batteries.
* Always replace all the batteries with new ones
* Only use type LR03 (AAA) batteries.
* Never mix old and new batteries.

3. Pay attention to the correct order as written in the compartment when inserting the batteries.
4. Once you have replaced the batteries, close the lid again carefully. Insert the centering tab at the bottom of the battery lid into the corresponding groove in the housing and close the lid by tilting it upward.
5. Gently press the lid upward against the housing and lock the battery compartment by pushing the HAAG-STREIT logo back up again.

NOTE!
Dispose of used batteries properly.
A. Appendix

NOTE!

Order numbers are written in italics.

An asterisk (*) shows that you should contact your HAAG-STREIT representative for further information.

A.1 Accessory original HAAG-STREIT measuring prism

The original HAAG-STREIT measuring prisms are made of PMMA and guarantee the best optical and mechanical quality. Reusable measuring prisms must be cleaned and disinfected after every examination. See Chapter *1.6.1, Cleaning and disinfecting the measuring prism* and the separate instructions for use. HS art. no. 7220316

A.2 Accessory tonosafe

Tonosafe disposable prisms are a comfortable and effective solution to reduce the risk of cross-infection in patients. Tonosafe is available in sterile packages with 5 supports and 100 disposable prisms. HS art. no. 7220345

HS art. no. 7220346 (USA)

B. Legal regulations

• HAAG-STREIT maintains a quality management system in accordance with EN ISO 13485. The device was developed and designed in observance of all the standards listed in section "EMC".

• The tonometer is a Class I device with measurement function in accordance with Appendix IX of Directive 93/42/EEC. By affixing the CE mark we confirm that our device complies with the applicable standards and directives.

• You can request a copy of the declaration of conformity for the appliance from HAAG-STREIT at any time.

C. Classification

<table>
<thead>
<tr>
<th>Standard EN 60601-1</th>
<th>Applanation tonometer in accordance with protection class I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode:</td>
<td>Continuous operation</td>
</tr>
<tr>
<td>CE Directive 93/42/EEC</td>
<td>Class Im (measuring function)</td>
</tr>
</tbody>
</table>

D. Disposal

Electrical and electronic devices must be disposed of separately from household waste! This appliance was made available for sale after the 13th August 2005. For correct disposal, please contact your HAAG-STREIT representative. This will guarantee that no hazardous substances enter the environment and that valuable raw materials are recycled.

E. Standards

<table>
<thead>
<tr>
<th>EN 60601-1</th>
<th>EN ISO 8612</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 60601-1-2</td>
<td>EN ISO 15004-1</td>
</tr>
</tbody>
</table>

F. Information and manufacturer's declaration regarding electromagnetic compatibility (EMC)

F.1 General
The Tonometer system fulfills the requirements on electromagnetic compatibility according to EN 60601-1-2:2007 (IEC 3rd Edition). The instrument is built so that the generation and emission of electromagnetic interference is limited to the extent that other devices are not disturbed in their use in accordance with the regulations and so that the instrument itself is suitably immune to electromagnetic interference.

![WARNING!]
- Electrical medical devices and systems are subject to special EMC measures and must be installed in accordance with the EMC instructions contained in this accompanying document.
- The operation of other lines or equipment than those listed may lead to higher emissions or may reduce the device's resistance to interference.
- Third-party devices may only be connected in compliance with the EN 60601-1 standard.

F.2 Emitted interference (standard table 1)
The information is based on the requirements of EN 60601-1-2:2007 (IEC 3rd edition).

Guidance and manufacturer's declaration – electromagnetic emissions
This product is intended for use in the electromagnetic environment specified below. The customer or the user of this product should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Emission test</th>
<th>Compliance</th>
<th>Electromagnetic environment - guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF emissions CISPR 11</td>
<td>Group 1</td>
<td>This product uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.</td>
</tr>
<tr>
<td>RF emissions CISPR 11</td>
<td>Class B</td>
<td>This product is suitable for use in all establishments, including domestic establishments and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes.</td>
</tr>
<tr>
<td>Emission of harmonics according to EN 61000-3-2</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Voltage fluctuations / flicker emissions according to EN 61000-3-3</td>
<td>Not applicable</td>
<td></td>
</tr>
</tbody>
</table>
F.3 Immunity (standard table 2)
The information is based on the requirements of EN 60601-1-2:2007 (IEC 3rd edition).

Guidance and manufacturer's declaration – electromagnetic immunity

This product is intended for use in the electromagnetic environment specified below. The customer or the user of this product should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Immunity test standard</th>
<th>EN 60601 test level</th>
<th>Compliance level</th>
<th>Electromagnetic environment – guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge (ESD) EN 61000-4-2</td>
<td>± 6 kV contact ± 8 kV air</td>
<td>± 6 kV contact ± 8 kV air</td>
<td>Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>Electrical fast transient / burst EN 61000-4-4</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Surge EN 61000-4-5</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Voltage dips, short interruptions and voltage variations on power supply lines EN 61000-4-11</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Mains power quality should be that of a typical commercial or hospital environment. If the user of this product requires continued function even in the event of interruptions in the energy supply, this product should be powered from an uninterruptible power supply or a battery.</td>
</tr>
<tr>
<td>Power frequency (50/60Hz) magnetic field EN 61000-4-8</td>
<td>3 A/m</td>
<td>30 A/m</td>
<td>Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.</td>
</tr>
</tbody>
</table>

NOTE: U_T is the AC mains voltage prior to application of the test level.
F.4 Immunity for non-life support devices (standard table 4)
The information is based on the requirements of EN 60601-1-2:2007 (IEC 3rd edition).

Guidance and manufacturer’s declaration – electromagnetic immunity

This product is intended for use in the electromagnetic environment specified below. The customer or the user of this product should assure that it is used in such an environment.

Electromagnetic environment – guidance

Portable and mobile RF communications equipments should be used no closer to any part of this product, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.

<table>
<thead>
<tr>
<th>Immunity test standard</th>
<th>EN 60601 test level</th>
<th>Compliance level</th>
<th>Recommended distance(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted RF EN 61000-4-6</td>
<td>3 V<sub>rms</sub> 150 kHz – 80 MHz</td>
<td>5 V<sub>rms</sub></td>
<td>(D = 0.7 \sqrt{P})</td>
</tr>
</tbody>
</table>
| Radiated RF EN 61000-4-3 | 3 V/m 80 MHz – 2.5 GHz | 5 V/m 80 MHz – 2.5 GHz | \(D = 1.2 \sqrt{P} \) 80 MHz – 800 MHz \\
| | | | \(D = 2.3 \sqrt{P} \) 800 MHz – 2.5 GHz |

Where \(P \) is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and \(D \) is the recommended separation distance in metres (m). Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range. Interference may occur in the vicinity of equipment marked with the following symbol:

NOTE 1: At 80 MHz and 800 MHz the higher frequency applies.

NOTE 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

a. Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which this product is used exceeds the applicable RF compliance level above, this product should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orienting or relocating this product.

b. Over the frequency range 150 kHz to 80 MHz, field strengths should be less than 5 V/m.

c. Possible shorter distances outside the ISM bands do not contribute to improved application in this table.
F.5 Safe distances for non-life-supporting devices (standard table 6))

The information is based on the requirements of EN 60601-1-2:2007 (IEC 3rd edition).

Recommended safe distances between portable and mobile HF communication devices and this device.

This product is designed to be operated in an electromagnetic environment in which radiated HF interference is controlled. The customer or user of this product can help to prevent electromagnetic interference by maintaining minimum distances between portable and mobile HF communication systems (transmitters) and this product, as recommended below in accordance with the maximum output of the communication system.

<table>
<thead>
<tr>
<th>Nominal output of the transmitter (W)</th>
<th>150 kHz – 80 MHz</th>
<th>80 MHz – 800 MHz</th>
<th>800 MHz – 2.7 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.035</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.44</td>
</tr>
<tr>
<td>1</td>
<td>0.35</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>1.1</td>
<td>2.2</td>
<td>4.4</td>
</tr>
<tr>
<td>100</td>
<td>3.5</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>

For transmitters with a nominal output not listed in the table above, the distance D can be calculated in meters (m) using the equation for the respective column, in which P is the nominal output of the transmitter in watts (W) according to the specifications of the transmitter manufacturer.

NOTE 1: At 80 MHz and 800 MHz the higher frequency applies.

NOTE 2: To calculate the recommended safe distance of transmitters in the frequency range of 80 MHz to 2.7 GHz an additional factor of $10^{1/3}$ was used to reduce the probability of a mobile/portable communication device causing interference if inadvertently brought into the patient area.

NOTE 3: These guidelines may not apply in all situations. Electromagnetic wave propagation is influenced by absorption and reflection of buildings, objects and people.
Should you have any further questions, please contact your HAAG-STREIT dealer at:

http://www.haag-streit.com/contact/contact-your-distributor.html